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TRANSITION SURFACES FOR SHORT-WAVE VIBRATIONS 
OF AN ELLIPSOIDAL SHELL IN A FLUID* 

A.L. POPOV and G.N. CHERNYSHEV 

The problem of resonance short-wave vibrations of a closed ellipsoidal 

elastic shell of revolution in a fluid is examined. An asymptotic solution 
(with respect to a large frequency parameter) is constructed for the 

Helmholtz equation for the acoustic pressure mode matched to the solutions 
of the system of equations of relative shell displacement. Is is shown 
that the radiation of a vibrating shell is governed by the location of the 

transition surfaces (TS) in the fluid and the transition lines on the shell 

that separate the non-wave zone with intensive pressure damping in the 

neighbourhood of the shell from the remote slowly damping radiation field. 

Regularities are investigated for the motion of the TS as the vibration 

frequency, circumferential wave number, and degree of curvature (prolatenessj 
of the shell change. Estimates are given of the applicability of the 

asymptotic approach. 

It is known that the vibrations of shells of revolution of non-constant 

curvature in a vacum occur with the formation of transition lines in 

certain frequency bands, where the nat'Jre of the state of shell stress 

and strain changes /l/. It is natural to expact that this property is 

conserved even for shell vibrations in a fluid, where TS also originate 

in the fluid because of the connectedness between the shell and fluid 

vibration modes. 

Interest in studying TS in fluids gave rise to a tendency to construct 

a solution of the problem that is valid both in the fluid layer surrounding 

the shell and in the far field. If radiation is not taken into account, 
then a problem is obtained that is similar to problems on shell vibrations 

in an incompressible fluid, whose solution for the pressure inthemedium 

does not change its nature with distance from the shell. This problem 

is solved effectively by approximate analytical methods (see /2/, say!. 

However, such a problem leaves open questions about the amplitudes of the 

resonant vibrations modes of the "shell-fluid" system, their damping 

because of energy radiaticn, and on the radiation field itself. Knowledge 

of the location of the T s as the connecting link between the near and far 

pressure fields in the fluid is the key to the solution of these questions 

within the framework of approximate methods. 

1. We examine the short-wave quasitransverse vibrations of a closed proiate ellipscidal 

shell of revolution submerged in an infinite compressible fluid excited by a normal periodic 

load Q(11)esp i (mp - ol). We separate the time component exp (-tot) and we write the initial 

equations for the shell steady vibration mcdes in the fluid and of the fluid :n spheroidal 

coordinates g,q, p (1 < E_ < M, / 11 I< 1% cl< fi-=C 2~) 

h,2A,2u. - A,X - 2,*n. T P (&,, q, fi) = Q (q) @R (I.11 
AZ2X -i- A1 11' = 0, AP + k2P = 0, w = 2EhW 

H,-’ (&,, 11) P,; /+;, = ?.*gw, ?.* = dp&-‘, k = UC-~ 

},,? = hZ ( ).t =L( ) 3(1--2) m dk 

Here W,/L are the deflection and half-thickness of the shell whose surface in 57 11, B 

coordinates agrees with the coordinate surface 5 = go, E,p,,v are Young’s modulus, density, 

and Poisson's ratio of the shell material, o,m are the angular frequency and wave number in 

the circumferential direction of the external vibrational load distributed along the shell 

meridian according to the law Q(q) X is the stress function, P,p,c are the pressure, density, 

and velocity of sound in the fluid, A, A2 are Laplace operators in space and on the shell 

*Prikl.Matem.Mekhan.,49,5,808-814,198s 
620 



621 

suxface, A1 is the Vlasov operator, and d is the focal length of the ellipsoid % = EO. 
We note that the construction of an exact solution for the problem formulated in series 

in spheroidal wave functions is possible in practice only for small values of the frequency 

parameter p = kd/2; as p grows the series convergence is degraded sharply /3/. 
An asymptotic method is proposed below for constructing the integrals of the initial 

equations for large p corresponding to the frequency range for short-wave shell vibrations in 
the fluid in which separation of all the functions in (1.1) into two groups is possible: slowly 
and rapidly varying along the meridian coordinate q. Among the slowly varying functions are the 
Lam& parameters and the radii of curvature of the shell, while the deflection, stress function, 
and pressure in the fluid are among the rapidly varying functions. 

We will represent the integrals of the Helmholtz equation (1.1) in the form 

P (5, rl, i3, P) = R (E, rl, P) S (rl, P) erp (imp) (1.2) 

with the unknown functions R(%+?+P) and S(1j.p) where R(%,s,p) is considered to vary slowly 
along the coordinate 9. The slow variability of the function R along the meridian coordinate 
is introduced in Order to satisfy all the conditions (1.1) on the shell surface in the principal 
term of the asymptotic form P. This is possible for complete separation of variables only for 
shells in the shape of a cylinder or a sphere. 

we set (1.2) in correspondence with (1.1) and we differentiate, taking the slow variability 
of part of the functions in the variable T) into account. We arrive at a system of equations 
in S (9% p) and R (%,q, PI 

(1 - $) S,,, + Lx (Q) - m2 (1 - q2)-’ - p2$l S = 0 (1.3) 
I(%* - 1) R,:1,5 - [v. (r)) + m* (5’ - I)-’ - p*%*1 R = 0 

in which the slowly varying function x(q) is introduced in place of the separation constant, 
Solutions of this quasiseparated system shoilld be valid in the whole space occupied by the 
fluid, including the shell surface on which they must be matched with the solutions of the 
surface (1.1). 

We first consider matching the integrals of system (l.l), (1.3) oscillating inthemeridian 
direction. As the forcing frequency approaches the resonance frequency of the shell-fluid 
system, these integrals determine mainly the vibration mode of a closed shell, while they 
actually agree at the resonance frequency. The influence of the force itself on the vibration 
mode and radiation field decreases here. The contribution from the vibration mode to the 
radiation can turn out to be predominant at the resonance frequency. 

In the case of vibrations of a prolate ellipsoidal shell of revolution, the condition of 
oscillation along the shell meridian is solved firt in the less curved equatorial domain (near 
9 = 0). We consider this to refer indeed to the appropriate integrals of the first equation of 
(1.3) on the shell surface. Hence, to construct oscillating integrals of system (1.31, the 
separation function z(n) should be sou$ht in the class of complex functions satisfying the 
conditions 

y. = Xl + ix,, x1 (O)- nz* > 0, I y.2 (0) I /Xi (O)-=g 1 (1.4) 

For In I>0 the nature of the integrals S(q,p) remains primarily oscillating up to 
values q= fq* that make the real part of the coefficient of S in (1.3) zero 

Xl (tl*) - m2 (1 - Q*)-~ - p*q*2 = 0 (1.5) 

For ill i>q* the integrals s(g,p) become rapidly attenuating. The values n =&izlf* are 
turning points fox the first equation in (1.3). 

In parallel with the conditions (1.4) and (1.5), we also impose the requirement that the 
real part of the coefficient vanishes forthe undifferentiated term in the second equation in 
(1.3) in a certain set of values of n from the interval L---1, II: 

x1 (11) + m* [E,*(q) - 11-l - p2%*2 (n) = 0 (1.6) 

This requirement yields a turning point in the second equation in (1.3) and sets up a 
connection between x,(q) and a certain surface % = %* (3) '> %IU later called the transition 
surface (TSI. The surfaces q = rf?j* will also be TS. 

Taking (1.5) and (1.6) into account, we reduce (1.3) to the form of equations with one 
large parameter p 

(1 -n*) S,,, + [p2'F1 (n) +- ix, (?)I S = 0 (1.7) 
NE2 - 1) R,fl.E - [P*'P~ (5, tl) -t- ix, WI R = 0 
91 = (%,* (11) - n2) Ll - ‘P&l - $1 (E,’ (9) - I)1 
‘pz = (%*2 bl) - %7 11 + (p*i(%2 - 1) (%** (n) - 1)1 
'P* = (1 - qcl*') (%,a (II,) - f), p2qp* = m2 

For any rl, E from the domain of their definition the first equation in (1.7) can have not 
more than two turning points, and the second not more than one. 
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We will examine the solution of the second equatian in (1.7) that yields the nature of 
the emitting component of the pressure in the fluid with distance from the shell. According 
to /4/, the uniform asymptotic form of the solution R(Esq,p) is sought by using the linearly 
independent Airy functions Ai, Bi whose arguments and the weighting functions in front of them 
are determined from the system of recurrence equations for different powers of the large 
parameter p. The solution rr(E.3,~) should also satisfy the radiation condition at infinity 
and the condition of boundedness in strips of the spheroidal coordinate system. Omitting the 
intermediate computations, as carried out for example in /a/, we write down the principal term 
of the asymptotic form 8 (E_s,p) 

ithe branches are chosen such that (-IT* -2 I). 
It is seen from (1.8) that during passage through the value tj = & (q) the arguments of 

the Airy function change sign from positive for ;; < E, {?j)f jq /<q*f to negative for E> j, !?I)* 
which results in a change in the asymptotic form of these functions: for a positive argument 
the function Bi grows as its modulus gxows, while Ai decreases according to a law similar to 
an exponential low; both functions oscillate with slow damping for a negative argument. 

Taking (1.8) into account, we set the solution (1.2) into the non-penetration condition 
of (1.1!. We obtain a relationship between the pressure on the shell surface and the defiectian 

If the surface f = 5, (11) iS YIGt “COC? C:OSe t0 tie Shell, 11.91 for p(q) can be given the 
simpler form 

We call f.i (11) the complex coefficient of the fluid apparent mass. Its real part in the 
asymptotic formula il.lO) is determined by the ratio between the exponentially damping component 
of the solution (1.8) and its derivative on the shell surface. The same result is obtained 
even when considering shell vibrations in a fluid without taking radiation intc account, when 
the apparent mass coefficient corresponding to the oscillating integrals w is a real functior, 
of q_ Therefore, the magnitude of the imaginary part of p in' !l.lO) characterizes the emissive 
power of the she;1 vibration mode !within the limits of the applicability of this formula, 

i.e., for E< f), and depends on the location of the TS E = 5, (II) and '1 = &II* in the fluid. 

2. We determine the frequency bid in which the representation is valid for the complex 
apparent mass of the fluid in the form il.lO!, and for the regularities of the TS E = 5, (11) 
and n = An* "motions" in this band as the vibration frecjuency changes, To do this we satisfy 
the compatibility condition for the modes of the shell fluid short-wave vibrations. 

We will write the AeLzbnhsltz equation in the short-wave approximation on +&e shell surface 

Replacing the second derivative with respect to s therein by non-differentiated terms 
and using (1.2) and (1.711, we obtain 

We note that (2.l.j is equivaient to the first equation in 11.7) within the framework ci 

the short-wave approximations. 
Because of the proporiionality between the integrals, Pf&,,r~,@) and zi?(rh 8) on the 

surface E = E, should simuitaneausly satisfy three equations in the two functions LO and x: 
these are the first twc equations in (l.lT in which P(&,v,p) is replaced by TV, a.nd (2.1 . 
The condition for them to be compatible is the characteristic equation (RI, B, ar@theprinciPl 
radii of curvature of the shell! 

(h,?$ - 1.2 [I + go-1 (1 +- ie)l} 3 +- (n&,H,,-2 - sA;')' = ir j2.2) 

k? = R-1 - I&-", E2oe = (d'z)* (1 - Tj2) (I;"% - I) 

Expressing the characteristic index f(rl‘ in :2.21 ?_ri terms of the parameter a (4. we 

obtain an algebraic equation of the 9-t.‘ h degree in this parameter. Since the function n (17: 

ahc;ld be real, .:,:,+:, ,,t. $x.- :‘ a c-r‘-a-:; --: &tWPE.; I: at-Ed F 



623 

6 = h9ga-1s,aecp-' (a), so2 = aa + k', 

m(a) = 2[2h,*s**- I*s* (1 + gu-r) - R;' (m4klH;i -s&‘)] 

Then a(q) is defined as the real positive root of (2.2) for s=6 ~0. The uniqueness 

of the positive root a = a,>0 follows from the analysis carried out in /2/, where an analogous 

equation was obtained (with zero values of e and 6) when taking into account only the rapidly 
damped components of the pressure function in the fluid at the shell surface. 

Therefore, for small e it is possible the TS coordinates in terms of the positive root 

sr of the algebraic equation of the 9-th degree obtained without taking radiation into account. 
Assuming that this root is known at each point of the shell meridian for a given frequency of 
vibration o and a circumferential wave number m, we transform the third equation in (2.1) into 

a quadratic equation in E,*(q): 

z* - [I + br (n) - c,l z + b,(n) - E*'c* = 0, tz = E,‘(q) (2.3) 
bl (7)) = Eo9 + (a, (11) !k)* (Et - q2), cl = m*p-* (E,* - 1)-l 

Having determined E,*(T)), we find n* as the positive root of the transcendental equation 

(1 - Q**) I&+’ (q*) - 11 - (m/p)” = 0 (2.4) 

in the interval [O,ll. Values of e(l) can be found afterward, and a decision on the appli- 
cabilityof (1.10) can be made according to their magnitude. If the quantity s(n) is of the 
order of one in a certain domain of variation of the coordinate ?), then the more general 
representation (1.9) must be used to solve the initial problem in this domain. 

The relationships obtained take the simplest form in the case of axisymmetric vibrations. 
The function f2 (E, TJ) becomes equal to ) E,* (q) - E* I/( E* - I), while its integral in the exponent 

of the exponential (1.10) reduces to the difference of elliptic integrals of the first and 
second kinds. For m = E = 0 the characteristic Eq.(2.2) is transformed into an equation of 
the fifth degree in a 

[h,* (a* + Jc*)* - (X2 - R*-*)I a - h*g = @ 

In the case of axisymmetric vibrations there are no TS q = &q*; the expression 

(4.5) 

5, (n) = IE** + (al (11)/X.)* (jgZ - I)*)P'* (2.6) 

is obtained for 5, (11) * It describes a symmetric ovaloid of revolution, tangent to the ellipsoid 

E, = &* L1 + (al (O)lk)*l”~ in the equatorial plane, and to the ellipsoid & = co [I + (al (1)/k)* (r*/b,)*]%, 
at the vertices, where r* = R, (0) is the radius of the equator, and b. is the semimajor axis 
of the shell. 

It is seen from (2.5) and (2.6) that for any fixed vibrations frequency, the positive root 

a1 has a maximum at the shall equator (in conformity with the maximum curvature R2-' (?I)) and 
decreases smoothly to the shell poles "adjusting" the TS g= E,(n) to them (in addition to the 
ratio r,lb, < 1) Therefore, a general property of the TS in the fluid during axisymmetric 
vibrations is their substantially greater removal from the equator of the ellipsoidal‘shell 
then from its poles. 

As the vibration frequency increases, the influence of the shell curvature on the root 

al of (2.5) decreases. The additional adjustment of the TS to the shell poles is thereby 
reduced. The dissimilarity in the distances between the TS and the shell at the poles and at 
the equator is conserved exclusivelybecause of the non-sphericity of the shell; the more 
prolate the shell, the closer does the TS approach its poles. 

As the difference E*(n)- E,, decreases (for a fixed vibration frequency), the quantity 

e(n) increases. As follows from the asymptotic form of the solution (1.8), the pressure in 
the fluid, caused by the shell vibrations, damps out intensively in the domain between the shell 
and the TS. Behind the TS it is converted into a complex function that oscillates with slow 
damping, the radiation pressure. Hence, knowing the distance from points on the shell meridian 
to the TS in the fluid for the magnitude of the imaginary part of the complex apparent mass 
coefficient(e) foragiven vibration frequency, the degree of reduction of the pressure amplitude 
in the fluid can be determined up to the time it is transformed into radiation pressure. 

It is clear from the above that the greatest radiation during axisymmetric vibrations 
starts from the region of shell surfaces adjacent to the poles. As the vibrations frequency 
decreases and (or) the prolateness of the shell increases, the contrast between radiation from 
the poles and from the equatorial region of the shell is magnified. Equilibrium of the radiation 
fields from individual sections of the shell surface occurs as the frequency increases. 

The deductions made agree with the well-known representation about the connection between 
the elastic strain wavelength and the radiation in the region of the equator where the shell 
stiffness is minimal, the strain wavelength is also less than in the pole domain. The radiation 
from the shell equatorial domain should also be correspondingly less. 

As an illustration, the TS coordinates are computed for axisymmetric vibrations of a steel 
ellipsoidal shell of revolution with r,/bo= 0.4,2/Jr, = 0.01 in water at frequencies related to the 
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curvature of the shell equator by i.r, = ~1, n= 0.5, 1,2, S. The results are represented in the 
figure. The locations of the TS 5 = 5, (11, for n = 0.5, 1, ?, b are shown by solid lines with 
appropriate notation. The outline of the shell meridian section is isolated by shading. 
Because of the symmetry of the pattern, only one quadrant is displayed. The quantities E= 
EOI,~I were also computed to check the applicability of the asymptotic formula (1.10). In 

domains where the condition ergI is violated, no TS were constructed (this is the domain 
near the shell poles for the curves with II = 0.5 and 1 in the figure) . In these domains there 
are 

the 

and 

can 

almost no zones of exponential damping. It can hence be assumed that the behaviour of 
pressure characteristic for the far field is observed here directly from the shell surface, 

the formula 

p l,,z1 = p-"'F (d 2) (?zO)-" Ai (II! [i\i' (OJ]-'P"? ' 

be used for the fluid apparent mass coefficient. 

For non-axisymmetric vibrations the location of the TS E = t.(llj in the region of the 
equator is not different from the axisymmetric case for frequencies higher than or equal tc 

the "annualar" frequency (n > 11; at frequencies less than the annular frequency it is removed 

a greater distance from the equator. The dashed curves in the figure are for shell vibration 
modes with three waves in parallel. Near the shell vertices a TS q: &ll is formed for nz+~ 
(a two-sheeted hyperboloid of revolution:, which intersects the shell along the transition 

lines. The location of the TS q= fq. for 171 3 and u = 0.5. 1,2, 8 is also shown by dashes in 

the figure. The surface 'I= -&I]* isolates the shell vertex, creating a domain of acoustic 
shadow at the sheets of the hyperboloid c,f revolution. For a non-axisymmetric vibration mode 

the greatest radiation occurs from the shell surface sections adjacent to the hyperboloid 

7, = +I]* at the equator side, for which the distance between the shell and the TS ; :. &,(q 

is minimal. 

As follows from (2.4), as the variability of the vibration mode grows in the circumferential 

direction, the non-radiating domain expands on the shell surface. On the other hand, an 

increase in the vibrations frequency for a fixed number of waves along the parallels mdisplaces 

the TS q - _Y]* to the ellipsoid vertices. 
Questions of constructing integrals of system r1.31 corresponding to complex values of 

x different from (1.4) are not touched upon here. They are constructed by the above-mentioned 

method but considerably more simply: for them there is no need to determine the dependence 

of the separation of varlabies parameter x on q. it is sufficient to assume that x is 

constant. The integrals mentioned are utilized in constructing solutrons cf boundary value 

problems, and are, as a r;le, localized at the shell bo-undaries, the lines cf load application, 

and reinforcements. 
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